273 research outputs found

    LightNeuS: Neural Surface Reconstruction in Endoscopy using Illumination Decline

    Full text link
    We propose a new approach to 3D reconstruction from sequences of images acquired by monocular endoscopes. It is based on two key insights. First, endoluminal cavities are watertight, a property naturally enforced by modeling them in terms of a signed distance function. Second, the scene illumination is variable. It comes from the endoscope's light sources and decays with the inverse of the squared distance to the surface. To exploit these insights, we build on NeuS, a neural implicit surface reconstruction technique with an outstanding capability to learn appearance and a SDF surface model from multiple views, but currently limited to scenes with static illumination. To remove this limitation and exploit the relation between pixel brightness and depth, we modify the NeuS architecture to explicitly account for it and introduce a calibrated photometric model of the endoscope's camera and light source. Our method is the first one to produce watertight reconstructions of whole colon sections. We demonstrate excellent accuracy on phantom imagery. Remarkably, the watertight prior combined with illumination decline, allows to complete the reconstruction of unseen portions of the surface with acceptable accuracy, paving the way to automatic quality assessment of cancer screening explorations, measuring the global percentage of observed mucosa.Comment: 12 pages, 7 figures, 1 table, submitted to MICCAI 202

    Crustáceos decápodos de fondos de maërl y cascajo de la isla de Alborán (Mediterráneo occidental)

    Get PDF
    Estudio de las comunidades de crustáceos decápodos de la plataforma continental de la Isla de Alborán, asociadas a fondos de maërl o rodolitos y de "cascajo" o biclastos.El presente estudio se enmarca dentro del proyecto LIFE + INDEMARES, uno de cuyos objetivos ha sido la caracterización de las biocenosis de los hábitats esenciales o vulnerables de la plataforma submarina de la isla de Alborán (Ref.: Fundación Biodiversidad, FB 05/2011, Universidad de Málaga). Los fondos de cascajo han resultado ser más ricos, diversos y con una mayor equirrepartición que los de maërl y con agunas especies raras o muy poco frecuentes, ya sea debido al tipo de fondo - hábitat y/o características hidrológicas de la zona.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Electrocatalytic studies on imidazolium based ionic liquids: defining experimental conditions

    Get PDF
    The number of publications devoted to studying electrochemical reactions in room temperature ionic liquids (RTILs) is constantly growing, but very few of them have been devoted to defining proper experimental conditions to obtain reproducible electrochemical results. In this work, we demonstrate that the combination of a proper RTIL purification treatment and a filtered Ar gas stream allow us to obtain featureless voltammograms in [C4mim][BF4], [C4mim][NTf2], and [C4m2im][NTf2], which otherwise present signals associated with different types of impurities such as water and some minor electroactive impurities acquired during the RTIL synthesis process. Moreover, we demonstrate that bubbling Ar, or another inert gas, through the electrolyte in order to purge O2 dissolved in RTILs is one of the major sources of water and O2 impurities incorporated in RTILs within the electrochemical cell. To overcome this source of water uptake, we have incorporated a gas stream purification filter before the gas reaches the RTIL in the electrochemical cell. To illustrate the effect of these impurities in relevant electrocatalytic studies, we study the electrocatalytic reduction of CO2 on Pt nanoparticles and the key role of an appropiate filter when the CO2 gas stream is bubbled within imidazolium based RTILs. Our cyclic voltammetric studies point out that CO2 electroreduction on Pt nanoparticles only presents activity in [C4mim][NTf2] and [C4m2im][NTf2], thus suggesting that the C-2 position on the imidazolium ring is not the key position in CO2 electrochemical reduction. In contrast, the same Pt nanoparticles are inactive towards CO2 electroreduction in [C4mim][BF4], which is a more hydrophilic RTIL.The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) (projects CTQ2013-48280-C3-3-R and CTQ2016-76231-C2-2-R) (AEI/FEDER, UE) and from the CNRS (projet Défi Instrumentation aux limites 2015). J. S.-G. acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante (UATALENTO16-02). C. M. S.-S. acknowledges financial support from the University of Alicante, visiting researcher grant INV16-15

    Structural stabilization of botulinum neurotoxins by tyrosine phosphorylation

    Get PDF
    AbstractTyrosine phosphorylation of botulinum neurotoxins augments their proteolytic activity and thermal stability, suggesting a substantial modification of the global protein conformation. We used Fourier-transform infrared (FTIR) spectroscopy to study changes of secondary structure and thermostability of tyrosine phosphorylated botulinum neurotoxins A (BoNT A) and E (BoNT E). Changes in the conformationally-sensitive amide I band upon phosphorylation indicated an increase of the α-helical content with a concomitant decrease of less ordered structures such as turns and random coils, and without changes in β-sheet content. These changes in secondary structure were accompanied by an increase in the residual amide II absorbance band remaining upon H-D exchange, consistent with a tighter packing of the phosphorylated proteins. FTIR and differential scanning calorimetry (DSC) analyses of the denaturation process show that phosphorylated neurotoxins denature at temperatures higher than those required by non-phosphorylated species. These findings indicate that tyrosine phosphorylation induced a transition to higher order and that the more compact structure presumably imparts to the phosphorylated neurotoxins the higher catalytic activity and thermostability

    On the Specific Adsorption of 7-methylguanine on Au(111) Surfaces for the Electroanalytical Sensing of Methylation Levels

    Get PDF
    The electrochemical determination of 7-methylguanine (7-mG) may result of interest because its presence can serve as probe of cytosine methylation of which is known as the most relevant epigenetic modification of DNA. This work explores the electrochemical response of 7-mG on different gold surfaces, both poly and single crystalline surfaces (Au (110), Au (111) and Au (100)). The results show that the adsorption-desorption process of the 7-mG is sensitive to the surface structure of the gold electrodes. Particularly, 7-mG adsorption-desorption profile on a Au (111) electrode exhibits some specific contributions which are found sensitive to the 7-mG concentration and, thereby could allow its quantification. These results may shed light on the future development of an electrochemical sensor for the diagnosis of the methylation degree in DNA.Authors would like to acknowledge funding obtained through the Spanish Ministry of Science and Innovation (MICINN) CTQ2013-48280-C3-3-R project

    Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model

    Get PDF
    ABSTRACT Background: The immunotherapy using dendritic cells (DCs) against different varieties of cancer is an approach that has been previously explored which induces a specific immune response. This work presents a mathematical model of DCs immunotherapy for melanoma in mice based on work by Experimental Immunotherapy Laboratory of the Medicine Faculty in the Universidad Autonoma de Mexico (UNAM). Method: The model is a five delay differential equation (DDEs) which represents a simplified view of the immunotherapy mechanisms. The mathematical model takes into account the interactions between tumor cells, dendritic cells, naive cytotoxic T lymphocytes cells (inactivated cytotoxic cells), effector cells (cytotoxic T activated cytotoxic cells) and transforming growth factor β cytokine (TGF − β). The model is validated comparing the computer simulation results with biological trial results of the immunotherapy developed by the research group of UNAM. Results: The results of the growth of tumor cells obtained by the control immunotherapy simulation show a similar amount of tumor cell population than the biological data of the control immunotherapy. Moreover, comparing the increase of tumor cells obtained from the immunotherapy simulation and the biological data of the immunotherapy applied by the UNAM researchers obtained errors of approximately 10 %. This allowed us to use the model as a framework to test hypothetical treatments. The numerical simulations suggest that by using more doses of DCs and changing the infusion time, the tumor growth decays compared with the current immunotherapy. In addition, a local sensitivity analysis is performed; the results show that the delay in time “τ ”, the maximal growth rate of tumor “r” and the maximal efficiency of tumor cytotoxic cells rate “aT” are the most sensitive model parameters. Conclusion: By using this mathematical model it is possible to simulate the growth of the tumor cells with or without immunotherapy using the infusion protocol of the UNAM researchers, to obtain a good approximation of the biological trials data. It is worth mentioning that by manipulating the different parameters of the model the effectiveness of the immunotherapy may increase. This last suggests that different protocols could be implemented by the Immunotherapy Laboratory of UNAM in order to improve their results
    corecore